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Locally Oriented Optical Flow Computation

Yan Niu, Anthony Dick, and Michael Brooks

Abstract—This paper proposes the use of an adaptive locally
oriented coordinate frame when calculating an optical flow field.
The coordinate frame is aligned with the least curvature direc-
tion in a local window about each pixel. This has advantages
to both fitting the flow field to the image data and in imposing
smoothness constraints between neighboring pixels. In terms of
fitting, robustness is obtained to a wider variety of image motions
due to the extra invariance provided by the coordinate frame.
Smoothness constraints are naturally propagated along image
boundaries which often correspond to motion boundaries. In
addition, moving objects can be efficiently segmented in the least
curvature direction. We show experimentally the benefits of the
method and demonstrate robustness to fast rotational motion,
such as what often occurs in human motion.

Index Terms—Directional derivative, image structure, intrinsic
direction detection, motion estimation, optical flow.

I. INTRODUCTION

PTICAL flow estimation, which is the estimation of ap-

parent motion between images at each pixel, is a classic
ill-posed inverse problem in computer vision. It is fundamental
to many techniques in motion estimation, tracking, segmenta-
tion, and compression.

Most approaches recover optical flow as a vector field that
best satisfies a set of constraints on data fitting and smooth-
ness. Data constraints are used to infer each pixel’s flow vector
from the image data, assuming that a certain intensity signature
of the pixel (e.g., brightness [1], gradient [2], or curvature [3])
remains invariant or varies predictably over time. Smoothness
constraints regularize each pixel’s flow by its neighbors’ flow,
assuming that the flow field is smooth to some extent. These
constraints can be further classified as local or nonlocal, de-
pending on whether the regularization is applied only to the im-
mediate neighbors of a pixel or a larger surrounding window [4].

Except for a few examples that use a log-polar coordinate
system (e.g., in [5]-[7]), most flow computation constraints are
modeled in the horizontal-vertical coordinate frame formed
by the image grid. This coordinate system is convenient for
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computation but often fails to represent the intrinsic image
structure, which is due to the projection of a 3-D scene onto
an image plane. In other words, the directions and magnitude
values of local intensity edges and gradients in natural images
are seldom aligned with the image grid. Intensity variation
information in particular provides important prior knowledge
for motion boundary prediction as the motion boundary often
coincides with the intensity edge.

To overcome such inflexibility, this paper proposes using the
coordinate frame determined by the underlying image structure
instead of the uniform image grid to model the flow computa-
tion constraints. Specifically, we associate each pixel with the
local reference frame spanned by the unit vectors in its edge and
normal directions. We refer to this adaptive coordinate system as
the intrinsic or structure-oriented (SO) coordinate! and the tradi-
tional coordinate system as the grid-based coordinate. We shall
show that the SO coordinate benefits motion boundary preser-
vation, rotation robustness, and motion outlier exclusion.

In the presence of a motion boundary, the local motion field
has the least significant variation in the local edge direction, and
the most significant variation in the normal direction, which
should be respected in the smoothness constraints to preserve
motion boundaries. For this reason, flow regularization should
be directed to the intrinsic directions. This can be naturally
achieved by modeling the local smoothness constraints, which
generally constrain flow variation in axial directions, in the SO
coordinate system. Many previous works (e.g., in [§]-[10]) aim
at the same goal but obtain the flow directional variation by
a different approach: They project the flow gradient onto the
detected intrinsic directions. This kind of projection implicitly
assumes that the motion field is continuously differentiable,
and the local regularization constraint is in fact imposed to
the horizontal-vertical variation of the flow. If the continuous
differentiability assumption is valid, the projection and the SO
coordinate frame have a similar effect. Otherwise, as we shall
show in this paper, the projection is not guaranteed to obtain
the directional variation accurately. This sensitivity to motion
differentiability is bypassed in the structure-based coordinate
frame.

Another significant difference between this paper and the
above previous works is that this paper embeds the intrinsic
directions not merely into the local smoothness constraint but
also into the data constraints and the nonlocal smoothness
constraint, through the SO coordinate frame.

IA similar concept is the gauge coordinate, which has the axes aligned with
the image gradient and the perpendicular direction. In practice, the gradient
is approximated by finite differencing in the x- and y-directions. As we shall
show later, if the intensity function is not continuously differentiable, the ap-
proximated gradient does not necessarily coincide with the true edge normal.
In this paper, the axial directions of the intrinsic coordinate frame are detected
by applying the original definition of directional variation. Therefore, strictly
speaking, it is not the gauge coordinate.

1057-7149/$26.00 © 2011 IEEE
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Because one axis of the local reference frame is aligned with
the edge, two individually moving objects are naturally seg-
mented to each side of the edge axis. Therefore, orthogonal to
the edge axis, one object is located in the positive side and the
other object in the negative side. We present a simple scheme
to decide which side belongs to the motion inlier object. Based
on this, motion outliers can be excluded by simply checking the
sign of the pixel coordinates. In previous related works (e.g., in
[11]-[14]), outliers are suppressed in the nonlocal smoothness
constraints by computing the pairwise weights over the whole
“nonlocal” window. This either incurs massive storage or inten-
sive computation load.

In addition, the grid-based reference frame is fixed over time,
whereas the SO frame changes with the structure. Therefore, if
the object undergoes fast rotation, the image gradient expressed
in the grid directions changes between frames, but its counter-
part expressed in the intrinsic directions is invariant. The rota-
tional invariance of this descriptor thus leads to data constraints
that are robust to rotation, which is desirable in real applications
such as human motion estimation.

The idea of a SO coordinate frame is independent of the
choice of data and smoothness constraints and can therefore be
incorporated into many existing flow algorithms that are formu-
lated in this way. The formulation and optimization described in
this paper can hence be applied, with some changes in detail, to
a range of previously proposed cost functions, where examples
of which are given in Section II.

The rest of this paper explores the construction of the SO
coordinate frame, the formulation of an objective functional
based on it, and the numerical minimization process. Section II
takes several fundamental flow constraints as examples to the-
oretically analyze the desirable features of SO coordinates. In
Section III, we present a new approach to computing the direc-
tional derivatives and estimating the local edge direction, based
on which we construct the intrinsic reference frame. Section IV
derives the numerical solution for the example formulation.
Four sets of experiments are conducted to quantitatively and
qualitatively evaluate the approaches proposed in this paper,
and the results are analyzed in Section V. The contribution of
this paper is summarized by Section VI.

II. BENEFITS OF THE SO COORDINATE FRAME

Given the brightness function E of an image sequence at the
horizontal, vertical, and temporal positions (z, y, t), we aim to
infer the perceived motion (i.e., optical flow) (u,v) from the
spatiotemporal variation of F(z,y,t) as an estimation of the
physical motion ((dz/dt), (dy/dt)). For the moment, we as-
sume that the unit vectors of the local edge and normal direc-
tions are known (the detection of them will be addressed in
Section III) and denote them by d and n, respectively. These
two vectors construct a local reference frame at the current pixel.
We index the axes of this coordinate frame by ¢ and 7. For sim-
plicity, the SO coordinate frame is referred to as the (n-frame,
and the traditional grid-based coordinate frame is referred to as
the zy-frame. The (n-frame degenerates to the zy-frame if d
and n are in the horizontal and vertical directions at each pixel.
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To respect oblique motion, we assume that the flow field is lo-
cally affine

U =u+ ai1( + an
U =v+ a3( + an (D

where (u,v) is the flow vector of the current pixel, (@,?) is
the flow vector of a pixel in the local area, and deformation
parameters «;’s are locally constant. Note that «; = (Ju/dd),
ay = (Ou/on), az = (0v/dd), and ay = (Ov/On).

In this section, we illustrate how the (n-frame enhances
the motion robustness, discontinuity-preserving ability, and
efficiency of the flow recovery. Although the illustration uses
a number of basic optical flow constraints as examples, the
discussion can be generalized to more sophisticated constraints
that are based on these. As the example constraints are ex-
pressed by mathematical equations whose left-hand sides are
“deviations” and right-hand sides are zeros, we define the
associated energy terms by applying a penalizing function to
the left-hand sides of these equations. The combination of these
energy terms forms the example cost function to be minimized
in Section IV.

A. Brightness Constancy Constraint

The most commonly used data constraint is the brightness
constancy assumption (BCA), which states that E(z + u,y +
v,t + 1) remains the same value as F(z,y,t) or F = 0.2
Linearized by the first-order Taylor expansion, this data con-
straint is conventionally modeled by the following mathemat-
ical equation:

ExEau+ Eop+ E, =0. ()

Here and throughout this paper, the subscripts of z, y, d, n,
and ¢t denote the corresponding partial derivatives.

The BCA in the (n-coordinates remains the same as in the
xy-coordinates. That is, the flow vector (u,v) is constrained
to minimize the change of the brightness. The associated data
energy term is defined by

¢ = (E) 3)

where () represents the penalizing function. The penalizers
P(x) = x2 (e.g.,in [15]), ¥(x) = |x| (e.g., in [16]) or the Char-
bonnier 1(x) = /x2? + € (e.g., in [17]) are common choices.
Other robust norm functions such as the Lorentzian [18] or the
Huber norm [19], [20] also have demonstrated effectiveness.

B. Gradient Constancy Constraint

In order to improve the robustness of the flow recovery to
lighting changes, many works adopt an additional data con-
straint based on the gradient constancy assumption (GCA). For
example, Zimmer et al. [17] use

dE,
i R Eppu+ Eyyv+ FEpy =0
dE,
d—tJ ~ Egyu+ Eyyv + By =0. 4)

2In this paper, we use (x) as a compact notation for the total temporal deriva-
tive (dx/dt).
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Unfortunately, the GCA is invalid in the presence of rotation
[21]. To remedy this disadvantage, Weickert et al. [22] suggest
using the gradient magnitude, which is rotation invariant. How-
ever, as the gradient magnitude discards one dimension of infor-
mation, it is less effective if rotation is not involved. The SIFT
feature [23], which is rotation and scale invariant, has been in-
tegrated into the flow computation in [24] for scene matching.
Yet, the SIFT feature is not differentiable and hence unsuitable
for variational flow computation. The invariance of higher order
derivatives, such as Laplacian and the determinant of Hessian,
has been discussed in [22]. Clearly, such features are more sen-
sitive to noise compared with the gradient.

Rotational robustness can be straightforwardly achieved in
the (n-frame, where the image gradient is V4 FE = [Eq, En)7,
and the GCA reads (dV4E/dt) = 0. The validity of this as-
sumption is robust to rotation. Moreover, V4 E also has the de-
sirable probabilities of differentiability and noise robustness. Its
total temporal derivative can be linearized similarly to [17], i.e.,

dFE,

d—td ~ FipqU + Eyd’U + Fiq

dE,

7 R Eont + Eynv + Eiy. 5)

Our empirical study also shows that the GCA in the (7)-frame
quantitatively outperforms the GCA in the xy-frame. However,
(5) does not take oblique motion into consideration. We switch
the order of taking the spatioemporal derivatives in (5), which

leads to
. 0 (dE
E = — _ =
47 od ( dt ) 0

: 0 (dE

and linearize Ed and E’n by the chain rule into

E~ ~ a(ETU/ + Ey’l) + Ef)
4 od
~ Emau + ETUE + Eyav + Eyva + Ett_i

~ (9(Eru + Ey’U + E‘t)

on

~ Fpiu+ Emuﬁ + Eyﬁ’l} + E'y’l},,rl + Etﬁ- (7)

Ey

R

Equation (7) extends the GCA to oblique motion: If the de-
formation parameters ugq, un, v4, and v, of the oblique motion
(u,v) are zeros, (7) degenerates to (5). The associated data en-
ergy terms are defined by

Ep =v(Ea), €5 =1(En). (8)

C. Local Smoothness Constraint

The smoothness constraint for affine flow has been discussed
by Ju et al. [25], Nir et al. [26], and by Trobin et al. [27].
We compare in the two coordinate systems the behavior of
the smoothness term by Nir et al. as it is closest to the gen-
eral smoothness terms often used in flow calculation. In the
zy-frame, letting A = [u, v, Uy, Uz, Uy, vy]T collect the affine
motion parameters, the local smoothness constraint by Nir et al.
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assumes that the spatiotemporal variation of A is zero [26] as
follows:

6
S IVAiP =0 ©)
=1

where V means the spatiotemporal gradient and A;
means the ith element of A. In the (n-frame, let vector
m = [u,v,uq, V4, Un, va]T collect the motion parameters; thus,
Vgm measures the spatial variation of m. The smoothness
constraint becomes

6
> IVami|* = o. (10)
i=1

Constraint (10) is more suitable than constraint (9) to preserve
motion boundaries, in that d (resp. m) is the most (resp. least)
smooth direction; hence, the flow smoothness should be en-
forced or inhibited in these directions rather than in the z- and
y-directions. To steer the smoothness differently in the edge di-
rection and edge normal, we employ the following local smooth-
ness constraints in our simulation:

Imall3 =0, [Imnll3 = 0. (1n
The associated smoothness energy term is defined by
€. = ¢ ([lmall2) + ¢ ([mall2) - (12)

The local intrinsic directions have been exploited for motion
boundary preservation in many previous works. For example,
Nagel and Enkelmann [8] estimate n by the gradient vector
VE = [E,, E,|T and d by the perpendicular vector VEL. Sun
et al. [9] detect the local intrinsic directions by the eigenvectors
of the local structure tensor. As pointed out in [10] by Zimmer
et al., both Nagel and Enkelmann [8] and Sun ef al. [9] have the
smoothness terms in the following form3:

w1 (E7 u, ’UW(UJ) + w2 (E7 u, U)¢(Uﬁ)

Fwz(E,u,v)P(vg) + wa(E,u,v)P(vg) (13)
where uq is obtained by projecting Vu to the direction d and
similarly for uy, v, and v,. The weight functions w; balance the
penalization of the flow variation in the directions of d and n.
Note that the smoothness constraint is ultimately applied to the
horizontal—vertical variation of the flow field. Our local smooth-
ness constraint modeled in the (7-frame is directly applied to
the flow variation in the intensity edge and normal directions.
In the extreme case that the deformation parameters are zeros,
the right-hand side of (12) degenerates to

o (Vi) +o (VT a)

which, at first glance, has a similar form to expression (13). One
major difference is that we obtain d and n by a directional con-
volution instead of predicting from the horizontal-vertical finite

(14)

3Note that Zimmer et al. proposes using a different set of intrinsic directions
and different penalizing functions in their work [10].
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Wy

n>0 n<0

Fig. 1. The line in the edge direction segments the surrounding window W into
two subregions W, and W, which are above and below the line, respectively.
In the (n-frame, W, = {(¢, n)|n < 0} and W, = {({,n)|n < 0}.

differencing of F, and obtain [ug, tn, Va, Un] by the original def-
inition of directional derivatives instead of projecting Vu and
Vo to d and n, which we explain in Section III.

D. Nonlocal Smoothness Constraint

Recently, a third type of constraints, which infers the flow
vector from the statistics of the surrounding nonlocal window,
has caused great research attention [11]-[14]. The nonlocal reg-
ularization terms generally have the following form:

Z w1 (57 ﬂ)q/} (u(x y) - u(jv g))
(z.9)ew

+ Y wa(@ )Y (v, y) —o(F§)  (5)

(z,9)eW

@

where W is the nonlocal window. Previous works have shown
that if ¢)(x) = |x|. the constraint enforces the flow to be close to
the weighted median of the flow vectors in the window W [14];
whereas if 1)(x) = x?, the constraint regularizes the flow by the
weighted mean [13]. The weight functions w; and ws act as soft
segmentation operators, by weighting down the possible outliers
in the window. Significant improvement has been reported [13],
[14], but the weights either have to be stored, incurring a large
memory requirement, or computed in each optimization itera-
tion, which increases computational expense.

We now show that a hard segmentation by the edge can
significantly improve the efficiency of these methods. In the
(n-frame, the edge axis partitions W into two subregions W,
and W;. Note that the two subregions are located in the positive
and negative sides of the 7 axis exclusively. In other words,
W, = {(¢,n)ln > 0} and W, = {({,n)|n < 0}, as shown in
Fig. 1.

If the current pixel p is on a motion boundary, it is very likely
that the intensity edge is where the two individually moving
objects meet. This means that one of the subregions contains
mainly the motion inliers of p, and the other contains mainly the
motion outliers. To recognize the inlier subregion, we compute
the average intensity value F, (resp. F) of W, (resp. W) and
compare them to p’s intensity F(p). The inlier region W, is
determined as

Win_{Wm if |E. — E(p)| < |Ey — E(p)] (16)

Wy, otherwise.
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Based on the selection, we model the nonlocal smoothness
constraints in the (n-frame by

S (G —ulCq)

(C,7)EWin

> v (vlcm o) =0

(( U)GW-n

0,

7)

and define the associated regularization energy term by

S (¢ ()

(&) EWin

énl =

+ > v (e -vdn). a8

(&) EWin

Selecting W;,, from W, and W}, performs a hard segmenta-
tion, i.e., the result of which can be stored as an array of binary
labels in the flow initialization step. In further computation, the
labels are reused to discard the outliers by filtering out the pixels
whose 7 coordinate have the “wrong” sign. This avoids repeat-
edly computing the weights in previous nonlocal smoothness
constraints and hence saves the computation cost.

The energy terms specified by (3), (8), (12), and (18) are in-
tegrated into the following cost function:

=[] (nesrraes, + € ) ne + M) dean
Q

(19)
where constant )\; values balance the contribution of each en-
ergy term.

We present the numerical optimization scheme of this objec-
tive function in Section IV. This scheme relies on accurate cal-
culation of local intrinsic directions at each pixel, which is the
subject of the next section.

III. INTRINSIC DIRECTION ESTIMATION AND THE SO
COORDINATE FRAME

Many previous works detect the edge direction by d =
(VE~+/||[VE]||) and the normal direction by n = (VE/||VE)
(e.g., in [8]), due to the derivation that

E,=(VE,n)=||VE|, E;=(VE,d)= (20)
which leads to the conclusion that n is the direction of maximum
change, and d is the isophote direction. However, Eq = (VE, d)
is not necessarily true when F is not continuously differentiable.
At the presence of an edge, F behaves like a smooth and differ-
entiable function in the edge direction but a step and discon-
tinuous function in the horizontal or vertical direction (unless
the edge is horizontal or vertical). Thus FE4 exists, but F, or
E, may not. However, in practice, £, and E, are enforced to
be the horizontal and vertical finite differencing values, which
can be arbitrarily large, and do not necessarily reflect F4. A
similar problem exists if the directional variation of the flow
field is computed by projecting the flow gradient, e.g., setting
ug = (Vu,d), which is widely adopted in previous works.

Fig. 2 shows two examples where the horizontal-vertical fi-
nite differencing fails to predict d or uq. Fig. 2(a) depicts a
discrete binary image of a black diagonal line lying against
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s ——x
1 0 0 -1 1 1 1 1
Y 0 1 0 y -1 ~1 —1 1 1
0 0 1 —1 ~1 ~1 —1 -1
(@) (b)

Fig. 2. Example situations where the intensity or the motion field is nondif-
ferentiable. Finite differencing leads to the wrong estimation of the gradient
and, consequently, the wrong computation of the edge direction and the direc-
tional variation. (a) Discrete image of a black line lying against a white back-
ground. The binary numbers indicate the intensity values of image pixels. The
intensity function of the center pixel is not differentiable in the horizontal and
vertical directions but differentiable in the diagonal direction. The edge direc-
tion cannot be estimated accurately by the gradient method because VE= is
erroneously approximated by the finite differencing (either forward or central)
scheme. (b) Discrete motion field of two objects moving to each other with op-
posite motions . = 1 and v = —1. The numbers indicate the motion values of
image pixels. u is not differentiable in the horizontal and vertical directions but
differentiable in the direction d = [2, 1]/+/5. Projecting the approximated (ei-
ther by forward or central differencing) Vu to this direction overestimates the
directional variation. One can easily construct similar examples for backward
differencing.

a white background. The center pixel of the image is nondif-
ferentiable in the z- and y-directions. Consequently, approx-
imating F, and E, by forward differencing yields VEL =
[1,—1]7/y/2, which is obviously an incorrect estimate of d.
Fig. 2(b) depicts the discrete motion field of two objects moving
toward each other with v = 1 and w = —1. Again, at the center
pixel, u is nondifferentiable in the x- and y-directions. Forward
differencing leads to Vu = [2,0]7; subsequently, the projection
of Vu to the direction d = [2, 1]/v/5 yields ug = 4/v/5. How-
ever, u is a constant function in the edge direction and u4 should
be zero. One can verify that central differencing also produces a
wrong estimate in these two examples and can construct similar
counter examples if backward differencing is employed.

This aliasing can be alleviated by the structure tensor method
(e.g., [9]) as Gaussian convolution can smooth out the nondif-
ferentiability. However, it may also cause oversmoothing. In
this paper, instead of relying the detection of d on the hori-
zontal—vertical finite differencing, we employ the original defi-
nition of directional derivatives, i.e.,

oF E(X +Te,t) — E(X,t)

— = lim ,TER
de T7—0+ T

21

where X = [z, y] and e = [cos f, sin 4] is a unit vector with an
orientation of # degrees.

Briefly, we estimate the edge direction approximately by one
of the 40 directions that quantize the 2-D plane evenly. The
reason for choosing 40 directions is due to the success of the
SIFT feature, which uses 36 histogram bins to cover the 360°
range of orientation. Moreover, our empirical study also vali-
dates the adequacy of using 40 directions. From these quanti-
zation directions, we select the direction that has the least in-
tensity curvature (in the magnitude sense), which indicates that
the intensity in this direction has a linear pattern. Note that the
least intensity variation direction generally has the least curva-
ture. Although the edge direction can be alternatively estimated
by the quantization direction that has the least first-order varia-
tion, we observe that the least curvature-based detection is more
stable. The curvature, which is measured by the second-order
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directional derivative, is given by the following central differ-
encing scheme:

0’FE

oe?

If E(X + e,t) and E(X — e,t) are obtained by bilinear

interpolation, the differencing can be quickly and easily im-

plemented by convolving the image with a high-pass kernel
K (92 £/5e2)- For example, in the case that § < (7/2), we have

~E(X +et)-2E(X,t)+ E(X —et). (22)

K,
de2
cosfsinf (1 —cosf)sin @ 0
= | cosf(l —sinf) -2 [iofoitsslﬁlz] cosf(1 — sinf)
0 (1 —cosf)sind cosfsin 6

Due to the symmetry of central differencing, the curvatures in
directions e = [cos 8, sin 6] and —e = [cos(7 + 6), sin(m + 0)]
have the same magnitude. Therefore, the direction selection can
be limited to the range [0, 7). This means that only 20 convolu-
tions are needed to determine the locally dominant direction.

By applying this edge direction estimation approach to the ex-
ample shown by Fig. 2(a), on which the gradient method fails,
it can be easily verified that the least directional curvature is
reached in the direction e = [cos(w/4), sin(7/4)], which coin-
cides with the true edge direction.

The above directional convolution involves the pixel’s imme-
diate neighbors only; hence, we call it pixelwise directional con-
volution (PDC). To improve the robustness, a Gaussian convolu-
tion with the Gaussian kernel G, where o is the standard devia-
tion, can be further applied. Similar to the derivative of Gaussian
(DoG), the PDC and Gaussian smoothing can be combined to
one convolution, i.e., the directional DoG. As it involves a local
region around the pixel, we call it regionwise directional convo-
lution (RDC).

The local SO reference frame is thus constructed in such a
way that its axes are always aligned with the detected local edge
and normal directions at the current pixel, with the unit length
defined as same as in the grid-based reference frame.

IV. NUMERICAL SCHEME FOR ORIENTED FLOW COMPUTATION

Having described the calculation of intrinsic directions, we
now return to the optimization of the objective function € [see
(19)]. In this paper, the minimization of € follows the optimiza-
tion routine employed in [2]. To facilitate understanding, this
section also adopts the notation system of [2]. However, the op-
timization of & presented here is not a straightforward extension
from [2]. First, the (7 coordinates and the deformation param-
eters give rise to additional equations and terms that do not ap-
pear in the Euler—Lagrange systems of previous works. Second,
a traditional numerical discretization scheme in the xy coordi-
nate frame is not applicable to the (7 frame.

The following settings are in common with [2]. The energy
functional € is minimized in the traditional framework of mul-
tilevel multistage refinement. In particular, an L-level Gaussian
pyramid is constructed by recursively subsampling the original
sequence. In each level [, the flow is refined by successive
stages of image warping, i.e., at each stage s = 0,...,S, the
flow increment 6u>*, 6v"* is obtained by solving the Euler—La-
grange equations associated with &%, The flow of stage s+ 1 is
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updated by (ubst1 vls ) = (ubs vh%) + (§ubs, §v%). After
S stages of refinement, the flow is propagated to level [ — 1 by
(ult=10 =10y = E(ulS v19), where k is the sampling factor.
The penalizing function is specified by 1(x) = v/x? + ¢, the
objective functional is minimized by solving the associated
Euler-Lagrange equation system. To obtain the numerical
solutions by linear schemes such as the Jacobi or Gauss—Seidel
iteration, an inner iteration is used to remove the nonlinearity
introduced by (). The derivation below focuses on simpli-
fying the Euler-Lagrange system and the discretization scheme
that leads to convergence in the (7 frame.

In this coarse-to-fine optimization structure, the core of the
algorithm is thus to minimize

@l’sz// (/\1@;;-1-)\2(6214-@%1)4-/\3@;’5-1-)\4@27) dldn

(23)
where the superscripts index the optimization context. We ap-
proximate the data terms by the chain rule

€ =y(L")
(El *ub 4+ ELsubs Eﬁ’s)
@l s (El s)
~ (Brgsut™ + BL*ouf + Eygso™* + By o0 + B )
@l-’s P (E ’S)

l/} E156uls+E155uls+Els&vls_i_El<6UZS+E )
(24)

with the intensity partial derivatives estimated from the first
image and the warped second image. The local smoothness term
of €b* reads

l,s __ l,s l,s
& _1/J(Hmd + 6my

)+ 0 ([mi 4 omi

2) (25

where §ém!* is the increment of m in level [ and stage s.
The minimizer of &"* fulfills the Euler-Lagrange system as
follows:

oehs o [ oebs a0 [ o¢bs
| -5 ; =0 (26)

oémbs  od \ Hém . on \ 9smly*
which consists of six equations, with the last four equations
arising from the deformation fields 6ufi’s, 61}2’", Suk®, and Svk”.

Moreover, by defining p(x) = (9% (x)/9x), which can be fur-
ther simplified to p(x) = (x/%(x)), the first two equations of

(26) read
Sl,s
l,s ol s l,s l,s p (Ed )
B g (B ) (714
P (En’ )
l,s l,s
1, s u, +6ud‘
pl\E; ) TTmasmi T
—Ain’sdin ,7q —Aszdivy Vﬂl'"ﬂiﬁ"{‘i I1,)
([mntomc|l,)
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where the divergence notation div, in the (7-frame means

8X1 8X2

: X1
diva <X2> T od * on

It can be seen that these deformation fields also appear in
p(E3%) and p(ER*) of (29). These additional equations and
terms do not appear in previous works as previous objective
functionals are generally formulated by two fields, i.e., fu’*®
and 6v"*, rather than an affine motion model. Consequently,
previous Euler—Lagrange systems generally have two equations
with two unknown fields.

Although the affine motion model is adaptive and is expected
to improve the flow computation accuracy, solving a system of
six equations substantially increases the computation load com-
pared with previous works. Inspired by the nonlinearity removal
strategy of Brox et al. [2], we decouple the deformation func-
tions (assembled by a'*) from (29) along with the linearization.

The nonlinearity of (29) is caused by the nonlinearity of func-
tion p(x). Brox et al. propose using an inner iteration to remove
the nonlinearity. Let r index the inner iteration. The flow incre-
ment is initialized by (§ub®7=0, svbsr=0) = (§ub® §v"%). In
the (7 + 1)th iteration, p(x"* T+1) (XI’S7T+1/1/;(XI’S7T+1)) is
approximated by p(x"*" 1) & (x!* "1 /4p(x>*")), which be-
comes a linear function of y'*"+1,

In the same vein, we decouple o from the computation
of sul*"+1 and §v'-*" 1 by replacing ab* 7! with a*". In
particular, in the rth iteration, after 6u"*" and §v"*" are ob-
tained, we derive o>5" from §uls" and §vb" by the defini-
tion of directional derivatives, instead of solving the last four
equations of (26). This simplifies the Euler—Lagrange equation
system to two equations. In addition, in the (r + 1)th iteration,
the involvement of o'»*" 1 is removed by the following approx-
imation scheme:

* in the case that p( 'gS’H'l) and p(ETI{S’Hl) appear in the
divergence term of (291, i.e., they will be further differen-
tiated with respect to d and 1, they are approximated as
shown at the bottom of the next page.

« in the case that p(E5"" ") and p(Ex***") will not be
further differentiated, they are approximated as shown at
the bottom of the next page.

l,s,r+1
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The term p(E“S’”‘l) in the same iteration is simply approx- To obtain the numerical solution of (31), we discretize the
imated by divergence terms by the following energy-preserving central
ELsgybsrtl 4 plsgylsr+l 4 phs differencing:
p (El,s,r+1) ~ T l yl : t ) (30) (C )5ul,sm+1
(4 (Em’s‘sul’s’r + Bytovher + Et’s) diva ( ; o1 )
The above approximation schemes convert (29) to equations s o
of Subs r+1 Su l,s,r+1 Sub , s r+1 61}l’s’r+1, 6vl,s,r+1’ and ( , +1 C—{— 1 ’I’]) (Sulvka +1(C>n))
splsr+t by replacmg 6ul 5 r+1, suks L, 6vg’s’r+1, and 1 e ¢ A
svbs™ 1 with 5ul” Su l”, 6v£’s’r, and §v5>F. This de- +p < - 77) 5“ —1,n) = du~™ (CJ]))
couples the deformatlon parameters from the Euler-Lagrange 1
equations of the (r + 1)th iteration. Now, solving (29) is ( 0+ _> 5ulsr+1 Con+l)— 6ul’s”"+1((7n))
simplified to iteratively solving the following equation pair: 2
0 = Aup(BHr ) L ra (G- 3) Euer i 1) = st )
+ /\2 ( (El S, 7‘+1) Ei’; + p (E#S,T‘-i’l) E‘ii) (32)
. ( I’S’T—H) Now, the Euler-Lagrange equation system is simplified to
— A By divg (EI’S’TH) equations of du'»*" 1 and svls 1,
Let NV = {¢ &£ 1,7 £ 1} collect the four immediate neigh-
uy ouy bors of pixel (¢, n) in the {n coordinates. With the differencing
— Aadivy ‘/’(H'l" +;F 51"2 T+l|| ) scheme (32), (31) can be rewritten into the numerical form
o[l +om L) sub*"+(¢,m) = w8 (C,n)
l,s Lisyr+1 _ ,ls l,s,r+1 s s.r
SV Ll u — ou; + Y By Y g suytT
2 0 e outor ) i i
. l,s,r+1
0 :)\lp(El,s,r+1)El,s + % 6U,L» + Cy
1€Win
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Uz s+5”l s,r+1

1€Win
— Azdivg (”m +6ml " ll.) i
O where w, w, B}, Kj, 74, €, C1, and C5 are functions of the
¥(||mn+omy7]|,) partial derivatives of F and motion deformation components
o T Ly SULE g ab*" and are constant with respect to fixed [, s, and r.
-\ - . (3D The above equation pair demonstrates another difference be-
€W ¥ (Ul’s + dvhsr — ”f - 5”5 ’ T) tween this paper and previous works: the flow of a pixel is
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“diffused” from its four immediate neighbors in the edge and
normal directions, rather than the horizontal and vertical direc-
tions. Hence, the local structure information is embedded into
the flow field. A numerical scheme such as the Jacobi iteration or
the Gauss—Seidel iteration straightforwardly recovers du!*"+1
and 6vb%" 1 from (33).

In summary, the optical flow is recovered by nested loops of
iterations. As pointed out by Brox et al. [2], the multilevel mul-
tistage minimization of &"* performs a fixed point iteration to
minimize €. Due to the convexity of %, there exits a unique
global minimum, which satisfies the associated Euler—Lagrange
equations. However, the nonlinearity-removal iteration (indexed
by r), which is in a very similar spirit to iterative reweighted
least squares for L1-minimization [28], is not guaranteed to con-
verge to the global minimum. The convergence of the Jacobi or
Gauss—Seidel iteration depends on the formulation of the dis-
cretized Euler-Lagrange equations. In all our experiments, 150
Jacobi iterations are enough for (33) to converge.

V. EXPERIMENTAL RESULTS

This paper mainly focuses on SO flow computation (see
Section II), and accordingly, the first set of experiments exam-
ines the effect of this method on several challenging sequences.
In addition, we propose a directional convolution method
for edge detection (see Section III), a new scheme to com-
pute directional derivatives (see Section III), and a nonlocal
regularization term based on the intrinsic structure-aligned
segmentation (see Section II-D). We test each of these pro-
posals using separate experiments, in which we isolate the new
technique and compare it to its traditional counterpart.

All the flow computation results presented in this paper are
obtained on grayscale sequences of two frames. Following [14],
the image pair is recursively subsampled by a factor of 2 to
construct the computation pyramid until the height of the sub-
sampled image reaches 20-30 pixels. In each pyramid level, the
flow is refined for five stages of image warping. In each stage,
five inner iterations are implemented to linearize the nonlinear
Euler—Lagrange equations. Parameter \; values are set based on
the sequence nature: If the underlying motion field is smooth,
Az and A4 should be large; otherwise, they should be small
to preserve motion detail [10]. For this purpose, we design a
simple approach to tune the parameters automatically. At the
top level, the parameters are initialized by Ay = 1, A» = 5, and
AL = AL = 1000. In the subsequent levels | = L —1,...,1, A}
and )} are adapted according to the estimated motion smooth-
ness. Specifically, we compute the flow variation of level [ 4 1
by || Vul*1|y + ||[Vo!*1||, and then count the portion of pixels
whose flow magnitude falls outside three standard deviations
from the mean value of the overall distribution. This portion
index, which is denoted by P is observed to be a low-cost
indicator of the amount of motion details. In all our experiments,
it ranges from 0.005 to 0.03. Therefore, in level [, A3, and \4 are
adjusted to

1000
max (0.5, round(100 x P'+1))’

A=) = (34)

The nonlocal window size is set by default to be 7 x 7 at the
top level. In the subsequent levels, if P > 0.02, it remains the
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Middlebury colorwheel warping [2]

4

Frame 546

patch matching [31]

Frame 550 complete matching [32]

overlaid SIFT initialization [33]

zoom in

the proposed method

Fig. 3. Results of the comparison conducted on HumanEva-II. Results by pre-
vious works are taken from the corresponding publications. As different ref-
erence uses different color coding scheme, we adjust the pictures to the same
coding scheme, i.e., the Middlebury colorwheel. Compared with techniques
such as warping [2] and patch matching [31], the proposed method estimates
the motion of the lower body with more accurate direction and magnitude. The
result is also competitive with [32] and [33].

same; otherwise, it is increased to 9 x 9. The flow computa-
tion accuracy is measured by conventional metrics of average
angular error (AAE) and average endpoint error (AEE) [29].

A. SO Optical Flow Computation

1) Application to Human Motion Sequences (SO Computa-
tion Versus the State of the Art): As the SO flow computation is
rotationally robust and discontinuity preserving, it benefits ap-
plications such as human motion estimation, which in many sit-
uations can be simplified to a series of rotations around trans-
lating joints. Fig. 3 shows an example sequence HumanEva-II
created by Brown University [30]. This sequence is challenging
for optical flow computation because the running person’s right
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Fig. 4. Optical flow estimated on sequences Backyard and Basketball. Com-
pared with methods that have the top performance on these sequences, the pro-
posed SO computation recovers the motion of the body segments with compet-
itive quality and preserves the profile of the moving persons faithfully (See the
highlighted areas). (a) Test frame of sequence Backyard. (b) Optical flow of the
walking boy computed by Trobin et al’s CBF, which has the least interpolation
error on Backyard in the Middlebury evaluation. (c) Flow computed by Wedel et
al’s F-TV-L1, which achieves the least normalized interpolation error on Back-
yard in the Middlebury evaluation. (d) Flow computed by the proposed method.
(e) Test frame of sequence Basketball. (f) Optical flow of the walking boy com-
puted by Xu et al’s MDP-FLOW2, which has the least interpolation error on
Basketball. (g) Flow computed by Drulea’s CLG-TV, which has the least nor-
malized interpolation error in the Middlebury evaluation. (h) Flow computed by
the proposed method. Interested readers are referred to the Middlebury evalua-
tion website for more information.

foot undergoes a large translation and fast rotation around the
ankle. The optical flow of this area is about 20 pixels/frame.*
This sequence has been used in [31]-[33] to test large displace-
ment estimation techniques. To overcome the difficulty, all these
works employ matching. For example, [31] uses patch matching
to guide the flow computation, [32] optimizes the cost function
by a brute-force search in the restricted range, and [33] initial-
izes the flow computation at each pyramid level with the aid
of SIFT matching. Although matching improves the accuracy
for large displacement computation, it drastically increases the
computation complexity.

Compared with previous works, the SO flow computation
captures the motion of each body segment and recovers the mo-
tion of the foot with the right direction and magnitude. The mo-
tion boundary between the foot and the leg is sharp enough to
discern the shape of the foot from the recovered flow. This re-
sult is comparable with the ones by [32] and [33]; however, the
proposed method achieves the result by simply orienting the
coordinate system, i.e., the computational cost of which is ev-
idently cheaper than the restricted brute-force search and SIFT
matching.

Fig. 4 shows another two examples on the Middlebury se-
quences Backyard and Basketball. For comparison, Fig. 4 in-
cludes the flow results achieved by two methods which achieve
the least interpolation error or the normalized interpolation error
on these two sequences in the Middlebury evaluation website.
Although our estimation of the background motion is inferior
to the best-performing methods, our human motion recovery
has competitive quality. For example, on sequence backyard,
the SO computation method recovers the motion contour of the

“4Following previous works to simulate large displacement, we extract frames
546 and 550 as two adjacent frames.
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walking boy clearly. Moreover, the motion boundaries are re-
covered in the head—neck area and the sleeve—arm area. Al-
though all methods suffer some errors around the moving foot,
the shape and position of the foot and leg can be easily rec-
ognized from the flow computed by the proposed method. Se-
quence Basketball also contains challenging human motion. The
SO computation and the reference methods estimate the motion
of the right persons’ arms and hands with similar visual quality,
yet the SO computation preserves the profile of the right person
more faithfully on estimating the head’s motion.

2) Evaluation on Synthesized Sequences ((n-Frame Versus
xy-Frame): We verify the stability, robustness, and generality
of the proposed algorithm on the Middlebury test and training
sequences. At the time of writing, the SO computation ranks the
21st by AAE and 22nd by AEE among the 56 methods evalu-
ated by the Middlebury testing [34]. Given that our objective
functional consists of the most fundamental flow constraints
and we use the minimum image information, this evaluation re-
sult validates the effectiveness of the locally oriented coordinate
frame. Moreover, on the Urban sequence, which consists mainly
of structures, our algorithm ranks the third by AAE. This per-
formance is consistent with our attempt to exploit the intrinsic
structure for flow computation.

The first two rows of Table I numerically compare the perfor-
mance of SO computation and grid-based computation (i.e., the
degenerated SO computation with d = [1,0]7 and n = [0, 1]T).
Except for the coordinate frames, all settings for the two com-
putation schemes are the same. As there is a lack of fast rotation
simulated in these sequences, the results mainly reflect the mo-
tion boundary preserving ability of the SO regularization. No-
ticeable improvement by the SO computation can be observed
on sequences Urban2, Urban3, Venus, and RubberWhale. The
difference between the performance of the two schemes on se-
quences Grove3 and Grove2 is less significant. The two schemes
achieve almost equivalent accuracy on sequences Hydrangea
and Dimetrodon. From these experiments, we observe that the
SO computation yields better accuracy on sequences that con-
tain a large amount of large-scale straight boundaries. This is
also confirmed by the qualitative comparison on the Middle-
bury test sequences Urban and Wooden, as shown in Fig. 5. The
reason is that the detection of intrinsic directions of such pixels
tends to be more accurate, particularly when the frame is sub-
sampled to the top level of the pyramid. On the other hand, in
areas that contain a mixture of directional textures, the accu-
rate detection of the intrinsic direction is difficult. This may re-
sult in the inferior performance of the SO computation. Fig. 10
demonstrates two examples where the SO computation fails at
the junction of three moving objects.

The average performance of using the affine motion model is
better than the translational motion model (i.e., assuming that
the deformation parameters are zero), as shown by row 3 of
Table I. Since the Middlebury training sequences do not con-
tain substantial oblique motion, the performance difference is
moderate. Fig. 6 shows the color-coded flow recovery results
and the grayscale-coded AAE results obtained by the SO flow
computation on eight Middlebury training sequences. The al-
gorithm was programmed in Matlab and executed on a per-
sonal computer with 1-GB memory, Intel Core 2 Duo CPU, and
2792-MHz clock speed. The running time on sequence Urban
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TABLE I
OPTICAL FLOW RECOVERY RESULTS BY DIFFERENT SCHEMES. BOLD NUMBERS INDICATE BEST PERFORMANCE
Venus Urban3 Urban2 RubberWhale Grove3 Grove2 Hydrangea Dimetrodon
AAE AEE | AAE AEE | AAE AEE | AAE AEE | AAE AEE | AAE  AEE | AAE AEE | AAE  AEE
StructureOriented (SO) 381 026 | 377 047 | 249 029 | 384 012 | 643 0064 | 243 0.7 | 216 0.8 | 1.82 0.9
GridBased (SO-NoOri) 449 029 | 580 067 | 288 037 | 437 013 | 663 069 | 269 0.19 | 216 018 | 1.82 0.09
SO-NoAffine 391 027 | 345 045 | 273 030 | 413 0.3 | 640 064 | 247 018 | 221 0.8 | 1.88 0.10
SO-Projection 392 026 | 395 051 | 276 034 | 412013 | 645 064 | 253 0.8 | 216 0.8 | 1.87 0.9
SO+DataNorm 334 024 | 404 048 | 246 030 | 356 011 | 659 066 | 229 0.6 | 219 0.18 | 1.84 009
SO+DataNorm+PreSmooth | 332 024 | 432 051 | 262 032 | 326 0.1 | 673 069 | 228 016 | 1.99 017 | 1.77 0.09
: _— imetrodo,
D\ il % omm
Urban grid-based structure-oriented § v :

Wooden

grid-based structure-oriented

Fig. 5. Qualitative comparison of the grid-based and SO computation perfor-
mance on sequences Urban and Wooden. Motion boundaries are evidently better
preserved by the SO flow computation.

is 9541 s. Note that our optimization employs Jacobi iteration
scheme, which is slower than the commonly adopted SOR.

We find that techniques such as data normalization [10]
and image presmoothing [21] can further enhance the AAE
and AEE accuracy of our baseline SO computation. To adapt
image presmoothing to multiscale computation, we design the
presmoothing filter f in level [ according to the motion detail
portion index P!*1. Specifically, if P+ < 0.01, f is Gaussian
with a standard deviation of 1, and if 0.01 < P! < 0.02,
f is Gaussian with a standard deviation of 0.8; otherwise,
f is an identity transform. Test results on the Middlebury
training sequences (rows 5 and 6 of Table I) suggest that both
data normalization (SO+DataNorm) and adaptive smoothing
(SO+DataNorm+PreSmooth) benefit the SO flow computation
on hidden texture sequences Venus, RubberWhale, Dimetrodon,
Hydrangea, but not computer rendered ones such as Urban3,
Grove3, and Grove2. This observation is also supported by the
Middlebury evaluation (Table II and the evaluation website
[34]). Despite varying results on individual sequences, the
overall AAE and AEE ranks are lifted above the baseline com-
putation and to a level competitive with comparable methods
such as Classic++ and TV-L!'-improved. We therefore use
the SO method with data normalization and presmoothing
(SO+DataNorm+-PreSmooth, row 6 of Table I) in practical ap-
plications. However, for the purpose of evaluating the oriented
coordinate frame, the following discussions are based on our
baseline SO cost functional and optimization scheme (SO, row
1 of Table I).

B. Why We Use Directional Convolution for Edge Detection
(Directional Convolution Versus The Gradient)

As the SO coordinate frame is attached to local intrinsic di-
rections, the detection of the edge direction and edge normal is
fundamental to the flow estimation. Although there are preva-
lent edge detection methods such as using the gradient or the

Groye2

| 1

(.g A\ o - ArJ .

RubberWhale "
l )
Urban2
-

P~ -

1

] | -
Urban3

Fig. 6. Color coded results of the flow estimation by oriented flow computa-
tion on Middlebury training sequences. From left to right, the test images, the
ground-truth flow, the computed flow, and the AAE images. In the grayscale
error maps, darker intensity indicates larger errors.

local structure tensor’s eigensystem, they derive the directional
variation from the horizontal and vertical variations, which may
be unreliable around directional boundaries. In Section III, we
propose a new approach based on directional convolution. In
this section, we compare the proposed PDC and RDC to the
prevalent methods. To test the generality of these methods, we
conduct this set of experiments on images that contain edges
and lines in a variety of orientations. Fig. 7 shows the results on
the test image Barbara, which consists of linelike textures of dif-
ferent directions and has been seeded with noise. Fig. 8 shows
the results on the test image Lights, which consists of lines that
densely cover the 2-D plane.
In these experiments, the structure tensor is defined by

G, ® (F;) G,®(E.E,)

ST =
G, ® (E,E,) G,® (Ej)

(35)
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TABLE 11
MIDDLEBURY EVALUATION OF THE SO COMPUTATION AND THE ENHANCED STRUCTURE ORIENTED COMPUTATION (SO-+DATANORM-+PRESMOOTH) AND
COMPARABLE APPROACHES. BOLD NUMBERS INDICATE BEST PERFORMANCE. SEE [34] FOR DETAILS

AAE Avg rank. | Army | Mequon | Schefflera | Wooden | Grove | Urban | Yosemite | Teddy
SO+DataNorm+PreSmooth 222 4.18 5.05 7.03 3.15 343 3.94 2.14 3.71
Classic++ 233 3.37 3.28 5.46 3.63 3.24 4.65 3.09 4.64

Tv-L ' -improved 24.7 3.36 2.82 6.50 3.80 3.34 5.97 3.57 4.01
StructureOriented (SO) 25.3 4.54 4.73 7.71 3.56 3.46 3.15 2.61 4.39

Middlebury Evaluation of the AAE performance

AEE Avg rank. | Army | Mequon | Schefflera | Wooden | Grove | Urban | Yosemite | Teddy

Classic++ 20.8 0.09 0.23 0.43 0.20 0.87 0.47 0.17 0.79
SO+DataNorm+PreSmooth 23.4 0.11 0.34 0.55 0.17 0.96 1.34 0.11 0.68
Tv-1'-improved 25.2 0.09 0.20 0.53 0.21 0.90 1.51 0.18 0.73
StructureOriented (SO) 25.5 0.12 0.33 0.61 0.18 0.93 0.98 0.12 0.73

Middlebury Evaluation

colorwheel

PDC

gradient perpendicular
b

i/ 3

| e
g

RDC

eigendecomposition

zoomed in view, eigendecompostion zoomed in view, RDC

Fig. 7. Edge detection results by different methods on a test image Barbara. In
this experiment, RDC shows its robustness to noise. Moreover, it outperforms
the structure tensor eigendecomposition method in the table cloth area, where
image intensity values change fast. Both methods use the same Gaussian con-
volution kernel.

where G, is an 11 x 11 Gaussian convolution kernel and o is
given by 11/5 = 2.2. The RDC method adopts the same G, .
For clarity, we code the edge detection results by the Mid-
dlebury color wheel, with the edge directions represented by
the hue values and the edge strength represented by the bright-
ness. In the experiments, unit vectors [cos 6, sin ] and [cos(f +

of the AEE performance

colorwheel

eigendecomposition

Fig. 8. Edge detection results by different methods on the test image Lights. It
can be seen that RDC preserves the line boundaries more sharply than the struc-
ture tensor eigendecomposition, although both methods use the same Gaussian
convolution kernel.

7),sin(f + )] are unified to [cosf,sinf], § € [0, 7) because
both vectors lie on the same line. As the edge strength is a “rela-
tive” quantity, the computation of the edge strength varies from
method to method. Specifically, the gradient method computes
the edge strength as the gradient magnitude; the structure tensor
eigendecomposition uses the square root of the largest eigen-
value; whereas PDC and RDC employ the intensity variation
in the detected edge normal direction. For comparison conve-
nience, we scale the edge strength to a fixed range of [0, 20].
The results on image Barbara show that PDC and the gra-
dient method detect the edge directions unstably, particularly in
the table cloth area. This demonstrates the sensitivity of the two
methods to fast intensity variation and noise. Evidently, RDC
and the structure tensor eigendecomposition method are more
robust. Furthermore, a detailed comparison on the two example



1584

regions show that RDC performs more consistently in the pres-
ence of textures, as illustrated by Fig. 7.

On test image Lights, PDC performs comparably to the gra-
dient method. This validates the adequacy of using 20 directions
to quantize the orientation range [0, 7). As for their robust ex-
tensions, Fig. 8 shows that RDC preserves the edge boundaries
more sharply than the structure tensor eigendecomposition.

C. Why We Compute Directional Derivatives Without
Projection (Original Definition Versus Steerable Filtering)

The flow recovery quality is decided by the coefficient func-
tions w, w, B, K, ¥;, &, C1, and C5 in the numerical solution
(33). These functions are expressed by the directional deriva-
tives of intensity and motion. As proposed in Section III, our
SO method computes the directional derivatives of a surface x
by

X _ (Z+e)-x(7)

%6 (36)

where Z = [( n]T. A prevalent estimation scheme for direc-
tional derivatives is to project the surface gradient to the direc-
tion e, i.e.,

X _ (vy.e)

de (37

which is a special case of steerable filtering [35].

To empirically compare the two schemes in terms of their
contribution to the flow recovery accuracy, we compute the co-
efficient functions of (33) by (37), and recover the flow field
with settings otherwise identical to our SO method. Row 4 of
Table I (SO projection) presents the yielded AAE and AEE re-
sults on Middlebury training sequences. Compared with the re-
sults presented from the SO flow computation (Row 1 of Table I,
S0O), it can be seen that (36) leads to better or similar accuracy
on all test sequences. We conduct this experiment under several
different settings of A values. Although the performance differ-
ence of the two schemes may vary on each sequence, the overall
superior performance of scheme (36) is always observed.

Figs. 9 and 10 present the flow computed under steerable fil-
tering scheme (37) on sequence HumanEva-II. Compared with
this result, the flow computed under scheme (36) (see Fig. 3)
preserves the motion boundary between the foot and leg more
faithfully.

D. Nonlocal Regularization (Structure-Aligned Segmentation
Versus Pairwise Weighting)

Section II-D proposes segmenting the nonlocal smoothing
window into the inlier part and the outlier part by the intrinsic
edge direction and imposing the nonlocal smoothness constraint
only to the inlier part. Previous works generally suppress the
outliers by pairwise weighting. It is interesting to compare the
efficiency of the structure segmented and the weighted nonlocal
regularization. However, as they are part of objective functionals
that are formulated in different coordinate frames, it is hard to
compare their performance without changing the other energy
terms. We thus turn to the close connection between nonlocal
smoothing and median filtering.
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Fig. 9. The color coded flow obtained on Sequence HumanEva-II by the al-
gorithm that employs steerable filtering (37) to compute directional derivatives.
Compared with the result obtained by the algorithm that employs the original
definition of directional derivative (36), scheme (37) results in underestimation
of the foot’s motion and blurry artifacts around the foot and leg. See Fig. 3 for
comparison.

estimated flow

estimated flow

true flow

Fig. 10. Examples of motion junctions where SO computation may have infe-
rior performance to the grid-based computation. Both sequences contain junc-
tion areas (circled), where three moving objects meet. In this situation, the de-
tected dominant direction does not predict the motion boundary well, conse-
quently the flow computation suffers errors in such areas.

In the case where 1) is the [1-norm penalizer, the nonlocal
regularization is essentially equivalent to a median filtering op-
eration on the intermediate flow obtained after each refining
stage, although the nonlocal regularization leads to lower en-
ergy solutions than median filtering. The similar performance
by the two schemes are analyzed by [14]. This means that the
pairwise weighted nonlocal smoothing roughly corresponds to
a weighted median filtering, and the structure-segmented non-
local smoothing roughly corresponds to a median filtering in the
inlier region W;,,. Hence, we convert the comparison of the non-
local regularization to the comparison of their corresponding
median filtering. First, this allows the remaining experimental
settings to remain the same. Second, this comparison provides
future reference for applications that involve pairwise weighted
median filtering.

We conduct the comparison on the platform of Sun’s publicly
accessible code [14], [36], particularly the “classic+nl-fast”
function with the “pcg” solver, which computes the flow incre-
ment by a classic model and denoises the intermediate flow by
a mixture of weighted median filtering and traditional median
filtering. We replace the weighted median filtering with the
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TABLE III
AAE AND AEE RESULTS OF CWF WITH DIFFERENT WINDOW SIZES AND CSF
Grove3 RubberWhale Dimetrodon Hydrangea Venus Grove2 Urban2 Urban3
AAE  AEE AAE  AEE AAE  AEE AAE  AEE AAE  AEE AAE AEE AAE  AEE AAE  AEE
CSF 7.81 0.84 5.53 0.17 5.83 0.32 2.49 0.23 6.05 0.42 3.94 0.28 4.76 0.89 8.49 1.33
CWF-15 8.18 0.87 5.63 0.18 5.94 0.34 2.52 0.23 6.05 0.41 3.74 0.26 4.35 0.59 8.20 1.27
CWF-5 7.47 0.79 5.46 0.17 5.79 0.32 2.45 0.23 6.72 0.44 3.38 0.25 4.84 0.79 9.17 1.26

structure-segmented median filtering and compare their effects
on the flow computation accuracy and their running time. In
the following discussion, we refer to the programs with the
two filtering schemes as classic+weighted-fast (CWF) and
classic+segmented-fast (CSF).

In this set of experiments, the weight function of the CWF
program is defined by the intensity contrast. Specifically
(Ek - E0)2>

552 (38)

Wp, = €xp (—
where F, denotes the intensity of the current pixel and E}, de-
notes the kth pixel in the nonlocal window. o = 5, as in [36].
The original code of [36] employs a more sophisticated weight
function, which is defined by the spatial distance, intensity con-
trast (in the Lab space, if RGB channels are available), and oc-
clusion measurement. This function leads to superior perfor-
mance but at the price of a higher computation cost. The neigh-
borhood size of the structure-segmented filtering is setto 7 X 7,
which means that the inlier region W, has 24 pixels. The rest
of the code of both programs remain identical to the original,
and all parameters take the default values. To record the time
consumed, we set on the profile in Matlab.

Table III reports their AAE and AEE results on eight Mid-
dlebury training sequences. As the weighted median filtering
uses all the pixels in the nonlocal window (15 x 15), whereas
the structure-segmented median filtering uses the window par-
tially (24 pixels), it was expected that the structure-segmented
median filtering trades accuracy for computation time. How-
ever, compared with CWF, CSF has superior accuracy on se-
quence Grove3; similar accuracy on sequences RubberWhale,
Hydrangea, Dimetrodon, and Venus; and inferior accuracy on
sequences Grove2, Urban2, and Urban3. The performance dif-
ference on all sequences is smaller than 0.4° in AAE, which is
moderate. On sequence Urban, each call of the weighted median
filtering takes 6.46 s on average; whereas each call of the struc-
ture-segmented median filtering takes about 1.72 s. To summa-
rize, out of the eight training sequences, the structure-segmented
median filtering leads to moderately inferior performance on
three sequences, and comparable performance on the rest; but
is about 3.75 times faster than the intensity-weighted median
filtering.

To compare the numerical performance of CWF and CSF at
similar computation cost, we also run a 5 x 5 weighted me-
dian filtering (i.e., CWF-5) by changing the window size pa-
rameter in to the code in [36] so that both schemes use about
the same number of pixels. Each call of CWFE-5 takes 2.61 s on
the average. This is about 2.48 times faster than one call of a 15
x 15 weighted median filtering but is still 1.52 times slower
than the proposed scheme. Compared with CWF-15, CWF-5
significantly deteriorates the computation accuracy on Urban2,
Urban3, and Venus.

VI. CONCLUSION

In this paper, we have proposed that optical flow should
be calculated at each pixel in an adaptive coordinate system,
which is aligned with the least local curvature direction. We
have shown that in this SO coordinate system, data constraints
based on the assumption of gradient constancy become robust
to fast rotation. In addition, local smoothness constraints pre-
serve motion boundaries with greater fidelity, and nonlocal
smoothness constraints can be imposed with more computa-
tional efficiency.

We have also proposed new approaches to computing direc-
tional derivatives and inferring coordinate axes at each pixel and
have shown that these lead to more accurate recovery of flow,
compared with projection based methods.

The use of a locally oriented coordinate frame can be incor-
porated into many existing flow computation methods without
major alteration to the algorithm structure. We anticipate that
this will also lead to further improvement of results, although
we leave the implementation to future work.
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